Super-resolution imaging by metamaterial-based compressive spatial-to-spectral transformation†
Abstract
We present a new far-field super-resolution imaging approach called compressive spatial to spectral transformation microscopy (CSSTM). The transformation encodes the high-resolution spatial information to a spectrum through illuminating sub-diffraction-limited and wavelength-dependent patterns onto an object. The object is reconstructed from scattering spectrum measurements in the far field. The resolution of the CSSTM is mainly determined by the materials used to perform the spatial to spectral transformation. As an example, we numerically demonstrate sub-15 nm resolution by using a practically achievable Ag/SiO2 multilayer hyperbolic metamaterial.