Issue 44, 2017

Probing the chaotic boundary of a membrane resonator with nanowire arrays

Abstract

Mechanically induced nonlinearities in nano-electromechanical systems (NEMSs) are typically avoided in design due to their unpredictable nature; however, by incorporating these normally unwanted nonlinear and chaotic phenomena, the performance of NEMS devices displays substantially different characteristics opening a broad new range of potential applications for their use. In this work, experiments have been conducted for probing the chaotic boundary of a circular membrane mechanical resonator with and without a silicone nanowire array (Si NWA). The NWA resonator can transition from linear to nonlinear quasi-periodic behaviour, and further transition into a chaotic state at resonance. Moreover, the NWA resonator demonstrated a high level of complex nonlinear behaviours, as the device expands the power spectral response from a single frequency at a linear regime to a wideband continuous frequency spectrum when chaotic behaviour was initiated; the threshold power of this transition decreased with a smaller NWA diameter. It was also observed that the NWA resonator had higher damping compared to the resonator without a NWA; however, as the vibration velocity of the NWA resonator increased, complex air damping and thin squeeze film damping lowered the threshold for probing the chaotic boundary condition of the NWA resonator.

Graphical abstract: Probing the chaotic boundary of a membrane resonator with nanowire arrays

Supplementary files

Article information

Article type
Paper
Submitted
01 Aug 2017
Accepted
10 Oct 2017
First published
11 Oct 2017

Nanoscale, 2017,9, 17524-17532

Probing the chaotic boundary of a membrane resonator with nanowire arrays

T. Yildirim, K. Cho, X. Wu and Y. Lu, Nanoscale, 2017, 9, 17524 DOI: 10.1039/C7NR05663J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements