Ultrafast structural evolution and formation of linear carbon chains in single-walled carbon nanotube networks by femtosecond laser irradiation†
Abstract
Inter-allotropic structural transformation of sp2 structured nanocarbon is a topic of fundamental and technological interest in scalable nanomanufacturing. Such modifications usually require extremely high temperature or high-energy irradiation, and are usually a destructive and time-consuming process. Here, we demonstrate a method for engineering a molecular structure of single-walled carbon nanotubes (SWNTs) and their network properties by femtosecond laser irradiation. This method allows effective coalescence between SWNTs, transforming them into other allotropic nanocarbon structures (double-walled, triple-walled and multi-walled nanotubes) with the formation of linear carbon chains. The nanocarbon network created by this laser-induced transformation process shows extraordinarily strong coalescence induced mode in Raman spectra and two-times enhanced electrical conductivity. This work suggests a powerful method for engineering sp2 carbon allotropes and their junctions, which provides possibilities for next generation materials with structural hybridization at the atomic scale.