Issue 45, 2017

Substrate-free copper nanoclusters exhibit super diamagnetism and surface based soft ferromagnetism

Abstract

Pure metallic copper nanoparticles free of any substrate were synthesized by the thermo-chemical reduction of copper acetate using triethanolamine as a reducing-cum-protection agent. The structure and physical and magnetic properties of the Cu NPs were analysed physicochemically. Microscopic analysis reveals the formation of particles of size of 3–5 nm as seen by TEM but present as a large agglomeration as identified by SEM. A structure of Cu9 is predicted for the Cu NPs on the basis of investigations using XPS, MALDI, EPR, and magnetic measurements and supported by the prediction of DFT calculation from an earlier work. The most important findings come from magnetization studies which prove the existence of giant diamagnetism from the nanomer clusters of copper as well as the formation of two different ferromagnetic transitions at ∼40 K and ∼100 K, the latter two arising from the surface properties possibly due to thin films of CuO and/or the presence of TEOA giving rise to temperature dependent coercivity revealing them to be soft room temperature ferromagnets. The clusters of Cu NPs with the identified structure show temperature and field dependent giant diamagnetism which is about 29–39 times larger than the diamagnetism calculated from known and established atomic values. Though such enhanced diamagnetism has been predicted for noble metal clusters, experimental observation so far has been restricted to Au and Pt and this is probably the first report on substrate-free metallic copper clusters.

Graphical abstract: Substrate-free copper nanoclusters exhibit super diamagnetism and surface based soft ferromagnetism

Supplementary files

Article information

Article type
Paper
Submitted
25 Sep 2017
Accepted
21 Oct 2017
First published
23 Oct 2017

Nanoscale, 2017,9, 17963-17974

Substrate-free copper nanoclusters exhibit super diamagnetism and surface based soft ferromagnetism

Y. Raju, P. Krishnamurthi, P. L. Paulose and P. T. Manoharan, Nanoscale, 2017, 9, 17963 DOI: 10.1039/C7NR07136A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements