Issue 4, 2017

Systematic synthetic and biophysical development of mixed sequence DNA binding agents

Abstract

It is now well established that, although only about 5% of the human genome codes for protein, most of the DNA has some function, such as synthesis of specific, functional RNAs and/or control of gene expression. These functional sequences open immense possibilities in both biotechnology and therapeutics for the use of cell-permeable, small molecules that can bind mixed-base pair sequences of DNA for regulation of genomic functions. Unfortunately very few types of modules have been designed to recognize mixed DNA sequences and for progress in targeting specific genes, it is essential to have additional classes of compounds. Compounds that can be rationally designed from established modules and which can bind strongly to mixed base pair DNA sequences are especially attractive. Based on extensive experience in design of minor-groove agents for AT recognition, a small library of compounds with two AT specific binding modules, connected through linkers which can recognize the G·C base pairs, were prepared. The compound-DNA interactions were evaluated with a powerful array of biophysical methods and the results show that some pyridyl-linked compounds bind with the target sequence with sub-nanomolar KD, with very slow dissociation kinetics and 200 times selectivity over the related sequence without a G·C base pair. Interestingly, a set of compounds with AT module connected by different linkers shows cooperative dimer recognition of related sequences. This type of design approach can be expanded to additional modules for recognition of a wide variety of sequences.

Graphical abstract: Systematic synthetic and biophysical development of mixed sequence DNA binding agents

Supplementary files

Article information

Article type
Paper
Submitted
02 Nov 2016
Accepted
13 Dec 2016
First published
13 Dec 2016

Org. Biomol. Chem., 2017,15, 827-835

Systematic synthetic and biophysical development of mixed sequence DNA binding agents

A. Paul, A. Kumar, R. Nanjunda, A. A. Farahat, D. W. Boykin and W. D. Wilson, Org. Biomol. Chem., 2017, 15, 827 DOI: 10.1039/C6OB02390H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements