Issue 13, 2017

A yellowish-green-light-controllable nitric oxide donor based on N-nitrosoaminophenol applicable for photocontrolled vasodilation

Abstract

Nitric oxide (NO) has been known as a gaseous chemical mediator, which modulates several physiological functions. Spatial and temporal control of NO release facilitates further study and medical application of NO. Herein, we report design and synthesis of a novel NO donor, NO-Rosa. NO-Rosa has a rosamine moiety, which absorbs yellowish green light. Upon irradiation with yellowish green light (530–590 nm), NO is released from NO-Rosa, presumably via photoinduced electron transfer from the N-nitrosoaminophenol moiety to the rosamine moiety. NO release from NO-Rosa was detected by ESR spin trapping and a NO fluorescent probe. Cellular NO release control was achieved in HEK293 cells using a NO fluorescent probe, DAF-FM DA. Furthermore, temporally controlled NO-induced vasodilation was demonstrated by treatment of a rat aortic strip with NO-Rosaex vivo and irradiation by yellowish green light. NO-Rosa is expected to be utilized for further study of NO-related physiological functions, utilizing its ability of spatiotemporal release of NO as a photocontrollable compound with harmless yellowish-green light.

Graphical abstract: A yellowish-green-light-controllable nitric oxide donor based on N-nitrosoaminophenol applicable for photocontrolled vasodilation

Supplementary files

Article information

Article type
Paper
Submitted
31 Jan 2017
Accepted
28 Feb 2017
First published
08 Mar 2017
This article is Open Access
Creative Commons BY-NC license

Org. Biomol. Chem., 2017,15, 2791-2796

A yellowish-green-light-controllable nitric oxide donor based on N-nitrosoaminophenol applicable for photocontrolled vasodilation

H. Okuno, N. Ieda, Y. Hotta, M. Kawaguchi, K. Kimura and H. Nakagawa, Org. Biomol. Chem., 2017, 15, 2791 DOI: 10.1039/C7OB00245A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements