Issue 18, 2017

Polyvalent C-glycomimetics based on l-fucose or d-mannose as potent DC-SIGN antagonists

Abstract

The C-type lectin DC-SIGN expressed on immature dendritic cells is a promising target for antiviral drug development. Previously, we have demonstrated that mono- and divalent C-glycosides based on D-manno and L-fuco configurations are promising DC-SIGN ligands. Here, we described the convergent synthesis of C-glycoside dendrimers decorated with 4, 6, 9, and 12 α-L-fucopyranosyl units and with 9 and 12 α-D-mannopyranosyl units. Their affinity against DC-SIGN was assessed by surface plasmon resonance (SPR) assays. For comparison, parent O-glycosidic dendrimers were synthesized and tested, as well. A clear increase of both affinity and multivalency effect was observed for C-glycomimetics of both types (mannose and fucose). However, when dodecavalent C-glycosidic dendrimers were compared, there was no difference in affinity regarding the sugar unit (L-fuco, IC50 17 μM; D-manno, IC50 12 μM). For the rest of glycodendrimers with L-fucose or D-mannose attached by the O- or C-glycosidic linkage, C-glycosidic dendrimers were significantly more active. These results show that in addition to the expected physiological stability, the biological activity of C-glycoside mimetics is higher in comparison to the corresponding O-glycosides and therefore these glycomimetic multivalent systems represent potentially promising candidates for targeting DC-SIGN.

Graphical abstract: Polyvalent C-glycomimetics based on l-fucose or d-mannose as potent DC-SIGN antagonists

Supplementary files

Article information

Article type
Paper
Submitted
10 Feb 2017
Accepted
10 Apr 2017
First published
12 Apr 2017

Org. Biomol. Chem., 2017,15, 3995-4004

Polyvalent C-glycomimetics based on L-fucose or D-mannose as potent DC-SIGN antagonists

B. Bertolotti, I. Sutkeviciute, M. Ambrosini, R. Ribeiro-Viana, J. Rojo, F. Fieschi, H. Dvořáková, M. Kašáková, K. Parkan, M. Hlaváčková, K. Nováková and J. Moravcová, Org. Biomol. Chem., 2017, 15, 3995 DOI: 10.1039/C7OB00322F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements