Issue 15, 2017

Optimized synthesis of π-extended squaraine dyes relevant to organic electronics by direct (hetero)arylation and Sonogashira coupling reactions

Abstract

This study reports on the synthesis and characterization of four molecular π-extended squaraine compounds relevant to the field of organic electronics. The compounds each consist of a bis-indole squaraine core end-capped with indoloquinoxaline units employing three different bridging units, namely thiophene, thiazole, and acetylene. Compound 10 bears a thiophene bridge, 11 consists of a thiophene bridge and fluorinated indoloquinoxaline terminal units, and compounds 12 and 13 are bridged by thiazole and acetylene, respectively. The final compounds are constructed using the atom economical direct (hetero)arylation or the classic Sonogashira carbon–carbon bond formation protocols. Each carbon–carbon bond forming reaction employing thiophene bridges (i.e. synthesis of compounds 10 and 11) has been optimized using the stable and reusable silica supported Pd catalyst, SiliaCat® DPP-Pd, streamlining the synthetic procedure. While compounds 12 and 13 were also accessible using the SiliaCat® DPP-Pd catalyst, the use of Herrmann–Beller and Pd(PPh3)4 catalysts, respectively, lead to improved isolated yields of the final materials. Compounds 10–13 were characterized by thermal gravimetric analysis, cyclic voltammetry, optical absorption spectroscopy, photoluminescence spectroscopy, and each structure was analysed using density functional theory. All compounds exhibit high thermal stability and good solubility in common organic solvents, including in the greener alternative 2-methyl tetrahydrofuran. The reported compounds display stable ambipolar redox behaviour, furthermore, we have demonstrated that the frontier molecular energy levels can be effectively tuned by changing the bridging unit as predicted by density functional theory. Most striking is the drastic optical absorption profile changes observed from this class of materials upon post-deposition film annealing, suggesting molecular rearrangement in the solid-state. The induced changes and fine structure observed upon post-deposition annealing is unique to these π-extended squaraines with nothing like it reported in the literature for related squaraine based materials.

Graphical abstract: Optimized synthesis of π-extended squaraine dyes relevant to organic electronics by direct (hetero)arylation and Sonogashira coupling reactions

Supplementary files

Article information

Article type
Paper
Submitted
14 Feb 2017
Accepted
27 Mar 2017
First published
27 Mar 2017

Org. Biomol. Chem., 2017,15, 3310-3319

Optimized synthesis of π-extended squaraine dyes relevant to organic electronics by direct (hetero)arylation and Sonogashira coupling reactions

A. Payne and G. C. Welch, Org. Biomol. Chem., 2017, 15, 3310 DOI: 10.1039/C7OB00362E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements