Synthesis and pH-dependent hydrolysis profiles of mono- and dialkyl substituted maleamic acids†
Abstract
Maleamic acid derivatives as weakly acid-sensitive linkers or caging groups have been used widely in smart delivery systems. Here we report on the controlled synthetic methods to mono- and dialkyl substituted maleamic acids and their pH-dependent hydrolysis behaviors. Firstly, we studied the reaction between n-butylamine and citraconic anhydride, and found that the ratio of the two n-butyl citraconamic acid isomers (α and β) could be finely tuned by controlling the reaction temperature and time. Secondly, we investigated the effects of solvent, basic catalyst, and temperature on the reaction of n-butylamine with 2,3-dimethylmaleic anhydride, and optimized the reaction conditions to efficiently synthesize the dimethylmaleamic acids. Finally, we compared the pH-dependent hydrolysis profiles of four OEG-NH2 derived water-soluble maleamic acid derivatives. The results reveal that the number, structure, and position of the substituents on the cis-double bond exhibit a significant effect on the pH-related hydrolysis kinetics and selectivity of the maleamic acid derivatives. Interestingly, for the mono-substituted citraconamic acids (α-/β-isomer), we found that their hydrolyses are accompanied by the isomerization between the two isomers.