Issue 47, 2017

A modular approach towards functionalized highly stable self-complementary quadruple hydrogen bonded systems

Abstract

Self-complementary quadruple hydrogen bonded systems have shown potential as key building blocks for developing various supramolecular polymers. Opportunities for the introduction of multiple functionalities would further augment, in principle, their application potential. Herein, we report a novel modular approach to simultaneously introduce two closely aligned side chains into AADD-type self-complementary quadruple hydrogen-bonding systems. Dithiane-tethered ureidopyrimidinone has been used as a reactive intermediate to efficiently attach closely aligned side chains by simply reacting with amines to form highly stable molecular duplexes. These duplexes featuring AADD-type arrays of hydrogen bonding codes are highly stable in non-polar solvents (Kdim > 1.9 × 107 M−1 in CDCl3) as well as in polar solvents (Kdim > 105 in 10% DMSO-d6/CDCl3). Another notable feature of these self-assembling systems is their insensitivity to prototropy-related issues owing to their prototropic degeneracy, which will enhance their application potential in supramolecular chemistry.

Graphical abstract: A modular approach towards functionalized highly stable self-complementary quadruple hydrogen bonded systems

Supplementary files

Article information

Article type
Paper
Submitted
21 Sep 2017
Accepted
09 Nov 2017
First published
09 Nov 2017

Org. Biomol. Chem., 2017,15, 10087-10094

A modular approach towards functionalized highly stable self-complementary quadruple hydrogen bonded systems

S. Rayavarapu, S. Kheria, D. R. Shinde, R. G. Gonnade and G. J. Sanjayan, Org. Biomol. Chem., 2017, 15, 10087 DOI: 10.1039/C7OB02358H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements