Issue 45, 2017

Control of porphyrin interactions via structural changes of a peptoid scaffold

Abstract

Nature utilizes optimally organized pigments in light-harvesting complexes. To mimic the natural photosynthetic proteins, effective control over inter-pigment interactions is necessary to attain the desired photophysical properties. Previously, we developed porphyrin–peptoid conjugates (PPCamide) and displayed two porphyrins at defined positions on an α-helical peptoid using a flexible n-butyl linker. Herein, we synthesized new porphyrin–peptoid conjugates (PPCC–C), where porphyrins are conjugated through a rigid C–C linkage to the helical peptoid via the Suzuki–Miyaura cross-coupling reaction. With PPCC–C, we studied the effects of backbone conformation, inter-porphyrin distance, and the linker flexibility on porphyrin interactions. When the rigid C–C linkage was used, conformational homogeneity of the PPC increased, providing more effective intramolecular excitonic couplings between the porphyrins; however, the intermolecular porphyrin J-aggregation decreased. In PPCC–C with a nonameric peptoid backbone, the formation of a threaded loop conformation was observed, which could be switched back to a helical conformation by N-terminal acetylation or by the addition of a protic solvent. This threaded loop-to-helix conversion restored the intramolecular porphyrin interactions. Our results suggest that PPCs represent an excellent system for control over porphyrin interactions and therefore are useful as a model system to elucidate pigment interactions in nature or as a molecular construct with switchable photophysical properties.

Graphical abstract: Control of porphyrin interactions via structural changes of a peptoid scaffold

Supplementary files

Article information

Article type
Paper
Submitted
25 Sep 2017
Accepted
31 Oct 2017
First published
31 Oct 2017

Org. Biomol. Chem., 2017,15, 9670-9679

Control of porphyrin interactions via structural changes of a peptoid scaffold

W. Yang, B. Kang, V. A. Voelz and J. Seo, Org. Biomol. Chem., 2017, 15, 9670 DOI: 10.1039/C7OB02398G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements