Issue 8, 2017

Photoreactions of 2-(furan-2-yl)-3-hydroxy-4H-chromen-4-one and 3-hydroxy-2-(thiophene-2-yl)-4H-chromen-4-one using cyclohexane and acetonitrile as solvents

Abstract

Photolysis of the titled chromenones was carried out at their longest absorption band (∼360 nm) using cyclohexane (CH) and acetonitrile (ACN) as solvents, in both aerated and de-aerated solutions. Different dimeric photoproducts were formed with both chromenones in aerated solutions. On photolysing 2-(furan-2-yl)-3-hydroxy-4H-chromen-4-one (FHC) in aerated cyclohexane, 2-(furan-2-yl)-2-{[2-(furan-2yl)-4-oxo-4H-chromen-3-yl]oxy}-2H-chromene-3,4-dione (a dehydrodimer) was formed, and on photolysing 3-hydroxy-2-(thiophene-2-yl)-4H-chromen-4-one (THC) in aerated ACN, a different dimeric product was isolated and identified. The corresponding 3-aryl-3-hydroxy-1,2-indandiones were also detected with FHC in ACN and with THC in CH, in addition to the dimeric products in both cases. On the other hand, in the de-aerated solutions, only the corresponding 1,2-indandiones were detected. 3-(Furan-2-yl)isobenzofuran-1(3H)-one as a secondary product was also detected with FHC in both solvents. An attempt was made to isolate the spectra of the photoproducts in situ. Excited State Intramolecular Proton Transfer (ESIPT) and Excited State Intramolecular Charge Transfer (ESICT) processes complicate the photodynamics of the reaction, making it difficult to predict the mechanisms of the photoreactions. However, tentative mechanisms have been proposed for the formation of the photoproducts.

Graphical abstract: Photoreactions of 2-(furan-2-yl)-3-hydroxy-4H-chromen-4-one and 3-hydroxy-2-(thiophene-2-yl)-4H-chromen-4-one using cyclohexane and acetonitrile as solvents

Supplementary files

Article information

Article type
Paper
Submitted
22 Mar 2017
Accepted
12 May 2017
First published
13 Jul 2017

Photochem. Photobiol. Sci., 2017,16, 1311-1319

Photoreactions of 2-(furan-2-yl)-3-hydroxy-4H-chromen-4-one and 3-hydroxy-2-(thiophene-2-yl)-4H-chromen-4-one using cyclohexane and acetonitrile as solvents

K. Kaur, R. Kaur, J. Tomar and M. Bansal, Photochem. Photobiol. Sci., 2017, 16, 1311 DOI: 10.1039/C7PP00106A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements