Issue 10, 2017

Multiple active components, synergistically driven cobalt and nitrogen Co-doped porous carbon as high-performance oxygen reduction electrocatalyst

Abstract

Developing durable and efficient doped-type carbon electrocatalysts with diverse heteroatoms or transition metals for oxygen reduction reaction (ORR) has captured increasing attention for their incredible electrocatalytic properties. However, compared to multiple-atom-doped carbon matrix, the introduction of single-type atoms into carbon skeletons provides little benefit to enhancing ORR activity. On the basis of this consideration, we successfully fabricated a cobalt (Co) and nitrogen (N) dual-doped porous carbon (Co@C-N) hybrid with multiple active sites by a facile strategy of combined hydrothermal reaction with thermolysis. As a comparison, porous nitrogen-doped carbon (C@N) was obtained by a similar method. Electrochemical tests confirm that the Co@C-N-120-900 exhibits the best ORR performance in alkaline media with the positive onset potential (Eonset) of 0.956 V vs. RHE (only 12 mV more negative than Pt/C), the high half-wave potential (E1/2) of 0.851 V vs. RHE (24 mV more positive than 20 wt% Pt/C), superior selectivity (a four-electron-dominant process), and smaller Tafel slope (57 mV dec−1). Meanwhile, as-synthesized Co@C-N-120-900 catalyst shows greater durability and significantly greater methanol tolerance than Pt/C catalyst. Our experiments indicate that the better overall ORR performance for Co@C-N-120-900 could be caused by the synergistic effect of multiple active components (single Co atom, Co–Nx and plentiful pyridinic-N), high BET specific surface area (1080 m2 g−1) and porous structures. Thus, the Co@C-N-120-900 catalyst is expected to be a cost-efficient and promising electrocatalyst in the field of the sustainable energy application, and this work might provide some directions for fabricating advanced energy storage materials.

Graphical abstract: Multiple active components, synergistically driven cobalt and nitrogen Co-doped porous carbon as high-performance oxygen reduction electrocatalyst

Supplementary files

Article information

Article type
Research Article
Submitted
21 Jul 2017
Accepted
26 Aug 2017
First published
28 Aug 2017

Inorg. Chem. Front., 2017,4, 1748-1756

Multiple active components, synergistically driven cobalt and nitrogen Co-doped porous carbon as high-performance oxygen reduction electrocatalyst

A. Zhu, P. Tan, L. Qiao, Y. Liu, Y. Ma, X. Xiong and J. Pan, Inorg. Chem. Front., 2017, 4, 1748 DOI: 10.1039/C7QI00427C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements