Temperature assisted shear exfoliation of layered crystals for the large-scale synthesis of catalytically active luminescent quantum dots†
Abstract
Edge state manipulations of transition metal dichalcogenides of ultra-small sizes are receiving tremendous scientific interest due to their applications in electronics, optoelectronics and energy conversion technologies. Here, we report a novel single step route for the large-scale production of luminescent quantum dots (QDs) of layered materials using a temperature assisted shear exfoliation method. The syntheses of molybdenum disulfide (MoS2) and tungsten disulfide (WS2) QDs are demonstrated, and enhanced hydrogen evolution reaction catalytic activities of QDs in comparison to their bulk and layered counterparts are demonstrated. This synthesis strategy is generalized to other layered structures such as graphite, leading to a bulk production of luminescent monodispersed QDs, enabling their status to the technology readiness level 9.