Facile construction of butadiynylene based conjugated porous polymers by cost-effective Glaser coupling†
Abstract
A series of butadiynylene (BD) based conjugated microporous polymers (CMPs) were facilely synthesized using various aromatic alkyne monomers with different geometries via a Glaser coupling reaction under mild conditions. All these CMPs form gels in situ after self-polycondensation. The chemical structures, morphologies, surface areas, CO2 and CH4 uptake capacities of the freeze-dried gels were thoroughly characterized. All four CMPs have large specific surface areas (up to 1008 m2 g−1), big total pore volumes (up to 1.11 cm3 g−1), high CO2 uptake capacities (up to 3.78 mmol g−1) and high CH4 adsorption capacities (up to 0.95 mmol g−1). Bearing densely incorporated active sites (CC bonds) for the binding of metallic ions (e.g. Li+), excellent porosity, and a conjugated network structure, these BD-CMPs hold great promise for applications in gas adsorption, heavy metal accumulation, heterogeneous catalysis, lithium batteries, etc.