Eosin Y dye-based porous organic polymers for highly efficient heterogeneous photocatalytic dehydrogenative coupling reaction†
Abstract
Construction of porous organic polymers (POPs) as metal-free heterogeneous organic photocatalysts for highly efficient catalytic organic transformations using visible light remains a key challenge. Herein, we report the “bottom-up” strategy to facilely synthesize two Eosin Y dye-based POP frameworks (EY-POPs) for highly efficient heterogeneous organic-photocatalysis. Owing to the high BET surface area and the built-in character of the covalently linked catalytic sites of EY-POPs, these photoactive polymers show excellent catalytic activity in photocatalyzing the aza-Henry reaction. The superior utility of the EY-POP-1 polymer in catalysis was demonstrated by the broad scope of the reactants and the high yield of the reaction products. Moreover, the EY-POP-1 polymer shows robust recycling capability with good retention of photoactivity over at least twelve cycles without any significant loss of the catalytic activity (94–98% yield).