Issue 11, 2017, Issue in Progress

In silico prediction of serious eye irritation or corrosion potential of chemicals

Abstract

Rapidly and correctly identifying eye irritants or corrosive chemicals is an important issue in health hazard assessment. The purpose of this study is to describe the development of in silico methods for the classification of chemicals into irritants/corrosives or non-irritants/non-corrosives. A total of 5220 chemicals for a serious eye irritation (EI) dataset and 2299 chemicals as an eye corrosion (EC) dataset were collected from available databases and literature. Structure–activity relationship (SAR) models were developed to separately predict serious EI or EC via machine learning methods. According to the overall prediction accuracy, the Pub-SVM model gave the best results for both serious EI (overall classification accuracy CA = 0.946) and EC (CA = 0.959). The sensitivity and specificity of serious EI were 97.3% and 86.7% for the training set, and 96.9% and 82.7% for the external validation set, respectively. Similarly, the sensitivity and specificity of EC were 95.5% and 96.2% for the training set, and 94.9% and 96.2% for the external validation set, respectively. The high specificity and sensitivity indicated that our models were reliable and robust, which can be used to predict the potential seriousness of EI/EC of compounds. Moreover, several structural alerts for characterizing serious EI/EC were identified using the combination of information gain and substructure frequency analysis.

Graphical abstract: In silico prediction of serious eye irritation or corrosion potential of chemicals

Supplementary files

Article information

Article type
Paper
Submitted
14 Oct 2016
Accepted
23 Dec 2016
First published
20 Jan 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 6697-6703

In silico prediction of serious eye irritation or corrosion potential of chemicals

Q. Wang, X. Li, H. Yang, Y. Cai, Y. Wang, Z. Wang, W. Li, Y. Tang and G. Liu, RSC Adv., 2017, 7, 6697 DOI: 10.1039/C6RA25267B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements