Nanophasic morphologies as a function of the composition and molecular weight of the macromolecular cross-linker in poly(N-vinylimidazole)-l-poly(tetrahydrofuran) amphiphilic conetworks: bicontinuous domain structure in broad composition ranges†
Abstract
Macroscopically homogeneous poly(N-vinylimidazole)-linked by-poly(tetrahydrofuran) (PVIm-l-PTHF) amphiphilic conetworks (APCNs) were investigated to reveal the effect of conetwork composition in a broad composition range between 25–91 wt% PTHF content and the molecular weight of the components on phase separation and the formation of different morphological features. No macroscopic phase separation was found in these conetworks with semicrystalline PTHF phase, but the segregation of the various covalently connected phases occurs in the nanoscale. The nanophase separated APCNs possess compositionally asymmetric morphology with spherical and elongated domains together with a bicontinuous (cocontinuous) domain structure having ∼7–19 nm average domain sizes. The molecular weight of the PTHFDMA cross-linker, varying between 2170 and 10 030 g mol−1, also influences the size and distance between the phases. Moreover, morphology dependent interactions with polar and non-polar solvents, as well as amphiphilic swelling behavior were found. These nanostructured materials, due to their unique nanophasic morphology and swelling properties possess significant importance and have numerous potential applications in various fields from medicine to material science and engineering.