Tribological characteristic and mechanism analysis of borate ester as a lubricant additive in different base oils
Abstract
A kind of N-containing borate ester (DEBE) with a double five-member-ring structure as a lubricant additive was synthesized by using boric acid, diethanolamine and alkylphenol polyoxyethylene ether as the starting materials. The tribological performance of the as-prepared DEBE was evaluated using a four-ball friction and wear tester in different base oils, such as liquid paraffin (LP), poly-alpha-olefin (PAO) and dioctyl sebacate (DIOS), while the morphologies of the worn scars of the steel balls were observed using a scanning electron microscope. The chemical components on the worn surfaces of the steel balls were analyzed using X-ray photoelectron spectroscopy. The tribological mechanisms in base oils of LP, PAO and DIOS were also explored. The results show that as-prepared borate ester DEBE possessed good antiwear properties in LP and PAO and can be used as a promising S- and P-free environmentally acceptable lubricating oil additive. However, the antiwear ability decreased when the additive DEBE was added to DIOS base oil. The antiwear ability of the DEBE borate esters used as an additive in DIOS might be closely related to competitive adsorption between DEBE borate ester and DIOS ester oil. Namely, compared with the DEBE additive, the DIOS base oil is first to adsorb to the metal surface because of the higher polarity. Moreover, a small amount of the additive absorbed on the metal surface may influence the continuity and compactness of the oil film formed by DIOS alone, resulting in destruction of the tribological properties of DIOS.