Issue 29, 2017, Issue in Progress

Low temperature hydrothermal synthesis of battery grade lithium iron phosphate

Abstract

Lithium ion transport through the cathode material LiFePO4 (LFP) occurs predominately along one-dimensional channels in the [010] direction. This drives interest in hydrothermal syntheses, which enable control over particle size and aspect ratio. However, typical hydrothermal syntheses are performed at high pressures and are energy intensive compared to solid-state reactions, making them less practical for commercial use. Here, we show that the use of high precursor concentrations enables us to achieve highly crystalline material at record low-temperatures via a hydrothermal route. We produce LFP platelets with thin [010] dimensions and low antisite defect concentrations that exhibit specific discharge capacities of 150 mA h g−1, comparable to material produced with higher temperature syntheses. An energy consumption analysis indicates that the energy required for our synthesis is 30% less than for typical hydrothermal syntheses and is comparable to solid-state reactions used today, highlighting the potential for low temperature hydrothermal synthesis routes in commercial battery material production.

Graphical abstract: Low temperature hydrothermal synthesis of battery grade lithium iron phosphate

Supplementary files

Article information

Article type
Paper
Submitted
11 Jan 2017
Accepted
10 Feb 2017
First published
23 Mar 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 17763-17767

Low temperature hydrothermal synthesis of battery grade lithium iron phosphate

P. Benedek, N. Wenzler, M. Yarema and V. C. Wood, RSC Adv., 2017, 7, 17763 DOI: 10.1039/C7RA00463J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements