Issue 26, 2017, Issue in Progress

Direct in situ synthesis of a 3D interlinked amorphous carbon nanotube/graphene/BaFe12O19 composite and its electromagnetic wave absorbing properties

Abstract

The 3D interlinked amorphous carbon nanotube (ACNT)/reduced graphene oxide (RGO)/BaFe12O19 (BF) composite was directly prepared by a self-propagation combustion process. The RGO was synthesized in situ through the massive heat release during the auto-combustion reaction. The interlinked ACNTs and graphene as well as BF formed the conductive networks for improving the dielectric and magnetic loss. The reflection loss peak of ACNT/RGO/BF composite was −19.03 dB at 11.04 GHz in the frequency range of 2–18 GHz. The frequency bandwidth of the reflection loss below −10 dB was 3.8 GHz. The 3D interlinked ACNT-RGO structure, which was composed of dense intertwined ACNT and graphene with quantities of dihedral angles, could consume incident waves via multiple reflections inside the 3D structures. The high conductivity of 3D interlinked ACNT/RGO networks would lead to energy dissipation in the form of heat through molecular friction and dielectric loss.

Graphical abstract: Direct in situ synthesis of a 3D interlinked amorphous carbon nanotube/graphene/BaFe12O19 composite and its electromagnetic wave absorbing properties

Article information

Article type
Paper
Submitted
16 Jan 2017
Accepted
06 Mar 2017
First published
10 Mar 2017
This article is Open Access
Creative Commons BY license

RSC Adv., 2017,7, 15903-15910

Direct in situ synthesis of a 3D interlinked amorphous carbon nanotube/graphene/BaFe12O19 composite and its electromagnetic wave absorbing properties

T. Zhao, X. Ji, W. Jin, C. Wang, W. Ma, J. Gao, A. Dang, T. Li, S. Shang and Z. Zhou, RSC Adv., 2017, 7, 15903 DOI: 10.1039/C7RA00623C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements