Issue 42, 2017

Physicochemical and catalytic properties of polysiloxane network–Pt systems

Abstract

Different polysiloxane networks obtained via a cross-linking process have served as matrices for the incorporation of metallic Pt particles by chemical reduction of metal ions from PtCl4 in THF solution in the presence of active Si–H groups remaining in the networks. Polysiloxane networks have been prepared by hydrosilylation of D4/V4 polysiloxane with branched (Q(MH)4) or cyclic (DH4) hydrosiloxanes, at different molar ratios of reagents. The influence of various topologies of matrices on the amount of introduced metal particles and their distribution in the matrix was investigated. Network–Pt systems, thus formed, have been characterized using FTIR spectroscopy, swelling measurements, X-ray diffraction, SEM and TEM microscopy combined with EDX microanalysis, and thermogravimetric studies. The reduction of platinum ions was monitored using UV-vis spectroscopy. The consumption of Si–H groups, accompanying the reduction, was investigated by IR measurements. Depending on the applied matrix, different amounts of platinum were introduced. XRD studies have confirmed the incorporation of Pt(0) into all obtained systems. It was established that the systems contained metal nanoparticles (size 3–6 nm). Microscopic investigations have shown that the size and the arrangement of Pt crystallites formed depend on the type of matrix applied. Catalytic performance of examined systems investigated using isopropyl alcohol conversion as the test reaction indicated mainly redox type activity. It was found that Pt dispersed in Q–P type supports, i.e. the polysiloxane networks obtained using the branched hydrosiloxane as the cross-linking agent, showed higher catalytic activity than Pt dispersed in C–P type matrices – the networks obtained with the application of the cyclic hydrosiloxane. The comparison of the behavior of synthesized samples with standard Pt/alumina catalyst in isopropyl alcohol conversion revealed higher redox activity of polysiloxane-supported systems in the lower temperature range.

Graphical abstract: Physicochemical and catalytic properties of polysiloxane network–Pt systems

Supplementary files

Article information

Article type
Paper
Submitted
15 Jan 2017
Accepted
04 May 2017
First published
18 May 2017
This article is Open Access
Creative Commons BY license

RSC Adv., 2017,7, 26342-26360

Physicochemical and catalytic properties of polysiloxane network–Pt systems

E. Stochmal, J. Strzezik and A. Krowiak, RSC Adv., 2017, 7, 26342 DOI: 10.1039/C7RA00641A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements