Issue 44, 2017

Synthesis of α-CaSO4·0.5H2O from flue gas desulfurization gypsum regulated by C4H4O4Na2·6H2O and NaCl in glycerol-water solution

Abstract

A brand new method to transform flue gas desulfurization gypsum (FGD gypsum) into α-calcium sulfate hemihydrate (α-HH) with short hexagonal prisms mediated by succinic acid disodium salt hexahydrate (C4H4O4Na2·6H2O) and NaCl in glycerol-water solution is studied, in which the appropriate reaction temperature is 90 °C. The addition of NaCl facilitates the dissolution of calcium sulfate dihydrate (DH) and creates much higher supersaturation which is a greater driving force for the phase transformation from DH to α-HH. C4H4O4Na2·6H2O as the crystal modifier effectively suppresses the α-HH crystal growth along the c axis, and the products generally change from needle-like particles to fat and short hexagonal prisms, which is attributed to the preferential adsorption of C4H4O42− on the top facets of the crystals by chelating Ca2+.

Graphical abstract: Synthesis of α-CaSO4·0.5H2O from flue gas desulfurization gypsum regulated by C4H4O4Na2·6H2O and NaCl in glycerol-water solution

Article information

Article type
Paper
Submitted
21 Mar 2017
Accepted
10 May 2017
First published
25 May 2017
This article is Open Access
Creative Commons BY license

RSC Adv., 2017,7, 27807-27815

Synthesis of α-CaSO4·0.5H2O from flue gas desulfurization gypsum regulated by C4H4O4Na2·6H2O and NaCl in glycerol-water solution

Q. Guan, W. Sun, Y. Hu, Z. Yin and C. Guan, RSC Adv., 2017, 7, 27807 DOI: 10.1039/C7RA03280C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements