Issue 41, 2017, Issue in Progress

Nanostructured fabric with robust superhydrophobicity induced by a thermal hydrophobic ageing process

Abstract

Superhydrophobic surfaces have been fabricated for several applications in clothing, biomedical and engineering fields. However, the durability of the nanostructure itself and the over-coating can be easily damaged during usage by deformation and delamination, respectively. Herein, a robust method to fabricate a superhydrophobic fabric with durable mechanical and chemical properties with a thermally enhanced hydrophobic ageing process is reported. A superhydrophobic PET fabric with a static contact angle of over 160° is fabricated by selective oxygen plasma etching, followed by a heating process, i.e. non-chemical finishing. XPS and XRD analysis indicate that a quick hydrophobic ageing occurred due to the reorientation of the PET polymer chains and an increase in newly formed crystallites on the PET surface after the thermal process. Water vapor transmission rate as well as air permeability of the plasma-etched and heated PET fabric sustain similar levels as those of untreated PET fabrics. In addition, the superhydrophobic PET fabric shows strong durability for washing, mechanical robustness and self-cleaning ability even after the surface nanostructures' damage. Thermal hydrophobic ageing process for nanostructured superhydrophobic textiles uses no chemicals for surface finishing, which results in improved wearing comfort and human/environment friendliness, thus attracting attention from the textile or biomedical goods and related industries.

Graphical abstract: Nanostructured fabric with robust superhydrophobicity induced by a thermal hydrophobic ageing process

Supplementary files

Article information

Article type
Paper
Submitted
03 Apr 2017
Accepted
26 Apr 2017
First published
12 May 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 25597-25604

Nanostructured fabric with robust superhydrophobicity induced by a thermal hydrophobic ageing process

J. Oh, T. Ko, M. Moon and C. H. Park, RSC Adv., 2017, 7, 25597 DOI: 10.1039/C7RA03801A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements