Issue 58, 2017, Issue in Progress

High-performance supercapacitors based on conductive graphene combined with Ni(OH)2 nanoflakes

Abstract

A green and facile strategy is reported for the synthesis of a three-dimensional (3D) graphene nanosheets (GNS)/Ni(OH)2 composite for use as a supercapacitor material. During this process, graphene oxide was reduced to graphene and Ni(OH)2 was attached in it to form the GNS/Ni(OH)2 composite via a chemical precipitation route without any complicated procedures. The product was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The analyses indicated that the Ni(OH)2 sheets were well interwoven on the surfaces of the graphene nanosheets. Furthermore, the composite was electrochemically tested by cyclic voltammetry, galvanostatic charge/discharge, specific capacitance, and by assessing its cycle life. The GNS/Ni(OH)2 composite exhibited a high specific supercapacitance of 2053 F g−1 at a current density of 0.3 A g−1 in 6 M KOH electrolyte and a long cycle life, along with 97% specific capacitance remaining after 1000 cycles. The GNS/Ni(OH)2 composite had superb electrochemical performance compared to bare Ni(OH)2, which could be attributed to its architecture. These results suggest that the GNS/Ni(OH)2 composite could have potential application as a supercapacitor material.

Graphical abstract: High-performance supercapacitors based on conductive graphene combined with Ni(OH)2 nanoflakes

Article information

Article type
Paper
Submitted
03 May 2017
Accepted
10 Jul 2017
First published
24 Jul 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 36617-36622

High-performance supercapacitors based on conductive graphene combined with Ni(OH)2 nanoflakes

H. Chai, X. Peng, T. Liu, X. Su, D. Jia and W. Zhou, RSC Adv., 2017, 7, 36617 DOI: 10.1039/C7RA04986B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements