Issue 53, 2017, Issue in Progress

Manganese dioxide core–shell nanostructure to achieve excellent cycling stability for asymmetric supercapacitor applications

Abstract

This study presents a facile and low-cost method to prepare core–shell nano-structured β-MnO2@δ-MnO2, in which β-MnO2 nano-wires act as the cores to form 3D networks and δ-MnO2 as the shells. A uniform hierarchical β-MnO2@δ-MnO2 core–shell structure can be obtained after layered structured δ-MnO2 is deposited on the surface of the needle-like β-MnO2 particles via a simple wet chemistry method at room temperature. The as-prepared materials were physically and electrochemically characterized by nitrogen isotherm analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and potentiostatically/galvanostatically. Under our conditions, the electrochemical results showed that the specific capacitance of β-MnO2@δ-MnO2 was ∼200 F g−1 and the specific capacitance retention was almost 100% after 5000 cycles at a current density of 1 A g−1 in 1 M LiOH electrolyte. The excellent cycling stability of β-MnO2@δ-MnO2 showed that the new material has great potential for use in electrochemical supercapacitors, and the facile wet chemistry method used to synthesize β-MnO2@δ-MnO2 could be a promising method to produce highly stable MnO2-based electrode materials in large batches.

Graphical abstract: Manganese dioxide core–shell nanostructure to achieve excellent cycling stability for asymmetric supercapacitor applications

Article information

Article type
Paper
Submitted
31 May 2017
Accepted
14 Jun 2017
First published
03 Jul 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 33635-33641

Manganese dioxide core–shell nanostructure to achieve excellent cycling stability for asymmetric supercapacitor applications

Q. Liu, J. Yang, R. Wang, H. Wang and S. Ji, RSC Adv., 2017, 7, 33635 DOI: 10.1039/C7RA06076A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements