Manganese dioxide core–shell nanostructure to achieve excellent cycling stability for asymmetric supercapacitor applications
Abstract
This study presents a facile and low-cost method to prepare core–shell nano-structured β-MnO2@δ-MnO2, in which β-MnO2 nano-wires act as the cores to form 3D networks and δ-MnO2 as the shells. A uniform hierarchical β-MnO2@δ-MnO2 core–shell structure can be obtained after layered structured δ-MnO2 is deposited on the surface of the needle-like β-MnO2 particles via a simple wet chemistry method at room temperature. The as-prepared materials were physically and electrochemically characterized by nitrogen isotherm analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and potentiostatically/galvanostatically. Under our conditions, the electrochemical results showed that the specific capacitance of β-MnO2@δ-MnO2 was ∼200 F g−1 and the specific capacitance retention was almost 100% after 5000 cycles at a current density of 1 A g−1 in 1 M LiOH electrolyte. The excellent cycling stability of β-MnO2@δ-MnO2 showed that the new material has great potential for use in electrochemical supercapacitors, and the facile wet chemistry method used to synthesize β-MnO2@δ-MnO2 could be a promising method to produce highly stable MnO2-based electrode materials in large batches.