Issue 59, 2017, Issue in Progress

Enhanced hydrogen storage properties of a dual-cation (Li+, Mg2+) borohydride and its dehydrogenation mechanism

Abstract

In this paper, we present a new method to synthesize a dual-cation (Li+, Mg2+) borohydride. It is found that Li–Mg–B–H is formed by mechanical milling a mixture of LiBH4 and MgCl2 with a molar ratio of 3 : 1 in diethyl ether (Et2O) and a subsequent heating process. The morphology and structure of the as-prepared Li–Mg–B–H compound are studied by SEM, XRD, FTIR and NMR measurements. Further experiments testify that Li–Mg–B–H can release approximately 12.3 wt% of hydrogen under 4 bar initial hydrogen pressure from room temperature to 500 °C and reach a maximum desorption rate of 13.80 wt% per h at 375 °C, which is 30 times faster than that of pristine LiBH4. Thermal analysis indicates that the decomposition process of the new compound involves three steps: (1) Li–Mg–B–H first decomposes into LiBH4 and MgH2 and synchronously releases a number of H2 molecules; (2) MgH2 decomposes to Mg and H2; (3) LiBH4 reacts with Mg, generating H2, MgB2 and LiH. Moreover, Li–Mg–B–H is proved to be partially reversible, which can release 5.3 wt% hydrogen in the second dehydrogenation process. The strategy of altering the χp of metal ions in borohydrides may shed light on designing dual-cation borohydrides with better hydrogen storage performance.

Graphical abstract: Enhanced hydrogen storage properties of a dual-cation (Li+, Mg2+) borohydride and its dehydrogenation mechanism

Supplementary files

Article information

Article type
Paper
Submitted
13 Jun 2017
Accepted
21 Jul 2017
First published
25 Jul 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 36852-36859

Enhanced hydrogen storage properties of a dual-cation (Li+, Mg2+) borohydride and its dehydrogenation mechanism

L. Zhang, J. Zheng, X. Xiao, X. Fan, X. Huang, X. Yang and L. Chen, RSC Adv., 2017, 7, 36852 DOI: 10.1039/C7RA06599J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements