Issue 72, 2017, Issue in Progress

Band gap opening of graphene by forming a graphene/PtSe2 van der Waals heterojunction

Abstract

Opening a band gap and finding a suitable substrate for graphene are two challenges for constructing graphene based nano-electronic devices. Recently, a new two-dimensional layered crystal PtSe2 with novel electronic properties has been efficiently synthesized by direct “selenization”. In this work, we demonstrate that PtSe2 can be used as a suitable substrate for graphene by forming a graphene/PtSe2 van der Waals (vdW) heterojunction. Hybrid density functional calculations show that PtSe2 as a substrate could introduce a sizeable gap of 0.264 eV into graphene, which is sufficiently large enough for overcoming the thermal excitation of electrons at room temperature. The underlying mechanism for the band gap opening of graphene is that the PtSe2 substrate can produce inhomogeneous electrostatic potential to break the symmetry of the A and B sub-lattices of graphene. By applying a vertical strain to the graphene/PtSe2 vdW heterojunction, the electronic properties of the heterojunction can be effectively tuned. As the vertical strain increases, the band gap monotonously increases and can reach as large as 0.781 eV. The tunable band gap, together with the high carrier mobility of both graphene and PtSe2, suggests the great potential of the PtSe2/graphene heterojunction in high performance field effect transistors.

Graphical abstract: Band gap opening of graphene by forming a graphene/PtSe2 van der Waals heterojunction

Supplementary files

Article information

Article type
Paper
Submitted
20 Jun 2017
Accepted
28 Aug 2017
First published
22 Sep 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 45393-45399

Band gap opening of graphene by forming a graphene/PtSe2 van der Waals heterojunction

Z. Guan, S. Ni and S. Hu, RSC Adv., 2017, 7, 45393 DOI: 10.1039/C7RA06865D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements