Issue 77, 2017

Towards the development of multifunctional hybrid fibrillary gels: production and optimization by colloidal electrospinning

Abstract

The incorporation of thermosensitive microgels that can act as active sites into polymeric fibers through colloidal electrospinning originates multifunctional, highly porous, and biocompatible membranes suitable for biomedical applications. The use of polyvinylpyrrolidone (PVP), a biocompatible, water-soluble polymer as a fiber template, not only allows the use of a simple set-up to produce composite membranes, but also avoids the use of organic solvents to prepare such systems. Further crosslinking with ultraviolet (UV) radiation avoids membrane dissolution in physiological conditions. Highly porous, UV crosslinked composite membranes with monodisperse mean fiber diameters around 530 nm were successfully produced. These composite membranes showed a Young Modulus of 22 MPa, and an ultimate tensile strength of 3 MPa, accessed in the mechanical tests. Furthermore, the same composite membranes were able to swell about 30 times their weight after 1 hour in aqueous medium. In this work composite multifunctional membranes were designed and extensively studied. PVP, a biocompatible water-soluble polymer, was used as a fiber template to incorporate thermoresponsive poly-(N-isopropylacrylamide) (PNIPAAm)-based microgels into the composite membrane using colloidal electrospinning. The design of multifunctional membranes can be further tailored to several biomedical applications such as temperature-controlled drug delivery systems.

Graphical abstract: Towards the development of multifunctional hybrid fibrillary gels: production and optimization by colloidal electrospinning

Supplementary files

Article information

Article type
Paper
Submitted
28 Jun 2017
Accepted
12 Oct 2017
First published
17 Oct 2017
This article is Open Access
Creative Commons BY license

RSC Adv., 2017,7, 48972-48979

Towards the development of multifunctional hybrid fibrillary gels: production and optimization by colloidal electrospinning

J. Faria, C. Echeverria, J. P. Borges, M. H. Godinho and P. I. P. Soares, RSC Adv., 2017, 7, 48972 DOI: 10.1039/C7RA07166C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements