UV/ozone-assisted tribochemistry-induced nanofabrication on Si(100) surfaces
Abstract
A UV/ozone-assisted tribochemistry-induced nanofabrication method is proposed to improve the efficiency of nanofabrication on monocrystalline silicon (Si). Experimental results indicated that the UV/ozone oxidation process provides a simple and efficient method to prepare SiOx films on Si substrates. After UV/ozone oxidation for 10 min, a SiOx film with 3 nm thickness and 42% oxygen content was prepared on a Si substrate. In addition, the SiOx film prepared via UV/ozone oxidation shows super-hydrophilicity, which is beneficial to the following tribochemistry-induced nanofabrication. Through the control of the UV/ozone oxidation period, nanostructures with various depths can be easily fabricated on Si substrates. With the increase of the UV/ozone oxidation period from 0 min to 30 min, the stable depth of the nanogrooves on the Si substrate increased from 2.5 nm to 230 nm. The proposed method provides a new approach for the fabrication of a wide variety of nanoscale structures and devices, including nanogratings, micro/nanofluidic devices, Si molds, and surface textures.