Issue 76, 2017, Issue in Progress

Wearable triboelectric nanogenerator using a plasma-etched PDMS–CNT composite for a physical activity sensor

Abstract

Triboelectric nanogenerators (TENGs) have recently shown promising potential as effective energy harvesters using human motion energy. However, the efficiency of polymer-based flexible TENG must be enhanced for various applications. In this work, we propose a flexible TENG with a fluorocarbon plasma-etched polydimethylsiloxane (PDMS)–carbon nanotube (CNT). The fluorocarbon plasma etching causes not only a chemical modification, but also a physical effect on the morphology of the PDMS–CNT surface to enhance the TENG output performance. The added CNT enhances the mechanical properties, such as durability, of a thin film. The etched PDMS structure and the revealed CNTs increase the charge density on the surface. We confirm the effect of different CNT concentrations doped in PDMS and various etching times. We propose a TENG with 4 wt% CNT, which has been subjected to fluorocarbon etching for 60 s. The TENG exhibits an output voltage of 77.8 V, which is 248.7% and 106.5% higher than that of pure PDMS and un-etched PDMS–CNT, respectively. The 20 mm × 30 mm TENG delivers an output power of 1.98 mW (3.29 W m−2) at a matching resistance of 3 MΩ. The TENG exhibits good stability and superior electrical performance, making it capable of driving both the instantaneous operation of 70 LEDs and the charging of a 0.33 μF capacitor to 6.6 V. Furthermore, this TENG can be used as a self-powered physical activity sensor that measures the amount of human activity through the amount of charge in the capacitor.

Graphical abstract: Wearable triboelectric nanogenerator using a plasma-etched PDMS–CNT composite for a physical activity sensor

Supplementary files

Article information

Article type
Paper
Submitted
11 Jul 2017
Accepted
10 Oct 2017
First published
13 Oct 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 48368-48373

Wearable triboelectric nanogenerator using a plasma-etched PDMS–CNT composite for a physical activity sensor

M. Kim, M. Kim, H. Kwon, S. Jo and Y. Kim, RSC Adv., 2017, 7, 48368 DOI: 10.1039/C7RA07623A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements