Issue 81, 2017, Issue in Progress

Synthesis of fluorinated nanoparticles via RAFT dispersion polymerization-induced self-assembly using fluorinated macro-RAFT agents in supercritical carbon dioxide

Abstract

A series of poly(dodecafluoroheptyl methacrylate)-b-poly(methyl methacrylate) (PDFMA-b-PMMA) diblock copolymer nanoparticles were prepared by reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization of methyl methacrylate (MMA) in supercritical carbon dioxide. Nuclear Magnetic Resonance (NMR) and gel permeation chromatography (GPC) analysis confirmed an efficient and well-controlled block copolymerization. As the length of the PMMA block grows from the soluble PDFMA block it eventually becomes insoluble, which drives in situ polymerization-induced self-assembly (PISA). The influences of the length of CO2-philic PDFMA block, CO2-phobic PMMA block and polymerization pressure were investigated in this PISA process. Also spherical nano-objects were formed upon the synthesis of amphiphilic diblock copolymers in situ. It appeared that, as the length of CO2-philic block PDFMA was increased, there was a corresponding decrease in particle size and particle size polydispersity. Scanning electron microscope (SEM) images revealed that, during the microspheres formation, the greater degree of polymerization (DP) of MMA favoured well-controlled monodisperse microspheres.

Graphical abstract: Synthesis of fluorinated nanoparticles via RAFT dispersion polymerization-induced self-assembly using fluorinated macro-RAFT agents in supercritical carbon dioxide

Supplementary files

Article information

Article type
Paper
Submitted
25 Jul 2017
Accepted
27 Oct 2017
First published
07 Nov 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 51612-51620

Synthesis of fluorinated nanoparticles via RAFT dispersion polymerization-induced self-assembly using fluorinated macro-RAFT agents in supercritical carbon dioxide

A. Xu, Q. Lu, Z. Huo, J. Ma, B. Geng, U. Azhar, L. Zhang and S. Zhang, RSC Adv., 2017, 7, 51612 DOI: 10.1039/C7RA08202A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements