Electromagnetic interference shielding cotton fabrics with high electrical conductivity and electrical heating behavior via layer-by-layer self-assembly route
Abstract
In our paper, multi-functional cotton fabrics with electrical and electromagnetic interference (EMI) shielding properties via layer-by-layer (LbL) electrostatic self-assembly approach were prepared. Chitosan was adopted as a polycation with graphene added by solution mixing, and poly(sodium 4-styrenesulfonate) (PSS) as a polyanion was deposited on cotton fabric substrate followed by the chitosan–graphene layer alternatively. Structural and morphological characterizations of the prepared LbL samples were carried out using SEM, AFM, XPS, and surface potential techniques. As expected, surface potential value exhibited an obvious “odd–even” regular pattern, which results from the alternating deposition of PSS and chitosan–graphene layers. Further, the electrical conductivity of the 10-layer-deposited fabric reached 1.67 × 103 S m−1. The fabric also exhibits ultrastrong electromagnetic interference (EMI) shielding ability with a maximum SE value of 30.04 dB. The LbL fabric also possesses excellent electrical heating behaviors. The temperature of the resultant fabric would monotonically rise to the steady-state maximum value (ΔTmax) of 134 °C within 8 min when 7 V voltage was applied, and exhibit excellent stability and recyclability. In addition, various performances remained almost unchanged after 10 consecutive washing treatments. The modified cotton fabric with lightweight, flexible and high-performance EMI shielding properties could be applied in personal protective garments and industrial textiles.