Tribochemistry and thermo-oxidative stability of halogen-free ionic liquids†
Abstract
Heat generation by friction during machine operation causes thermo-oxidative degradation and evaporation of lubricants which in turn generates volatiles. Therefore, having an excellent thermo-oxidative stability is one of the desired prerequisites for the applicability of lubricants in tribological systems. This study reports new insights regarding the thermo-oxidative stability of halogen-free room-temperature ionic liquids (RTILs) as well as fundamental changes in the tribofilm's composition that have a positive impact on their tribological performance at elevated temperatures. In this context, the formation of binary iron phosphates/phosphides based tribofilms from a phosphonium phosphate-based RTIL has been reported for the first time. This RTIL significantly enhances both thermo-oxidative stability and tribological performance of alkylborane–imidazole complexes. A beneficial effect between this RTIL and a conventional friction modifier led to enhanced anti-wear properties supported by the presence of iron phosphide/phosphate tribofilms on the disc surfaces, as detected by XPS.