Issue 83, 2017, Issue in Progress

Dual-phase spinel Li4Ti5O12/anatase TiO2 nanosheet anchored 3D reduced graphene oxide aerogel scaffolds as self-supporting electrodes for high-performance Na- and Li-ion batteries

Abstract

Self-supporting electrodes consisting of dual-phase spinel Li4Ti5O12/anatase TiO2 nanosheets and 3D reduced graphene oxide (RGO) aerogel for lithium ion batteries (LIBs) and sodium ion batteries (SIBs) were prepared via facile hetero-assembly, freeze-drying, mechanical compression and annealing. The 3D RGO aerogel acts as both conductive medium and self-supporting scaffold for anchored dual-phase nanosheets. The synergistic effect between the dual-phase nanosheets and the 3D highly conductive interconnected RGO network not only guarantees rapid reaction kinetics and strong structural stability of the electrodes during ion insertion/extraction, but also provides abundant accommodation for additional interfacial Li/Na storage. The self-supporting electrodes have desirable electrochemical performance such as a high reversible capacity (∼200/180 mA h g−1 for LIB/SIB at 1C/0.1C), good rate capability (∼141/117 mA h g−1 for LIB/SIB at 30C/10C) and superior cyclic performance (∼154/101 mA h g−1 for LIB/SIB at 10C/6C after 1000/700 cycles). Our results have great potential in constructing self-supporting RGO electrodes embedded with anode materials for LIB and SIB applications.

Graphical abstract: Dual-phase spinel Li4Ti5O12/anatase TiO2 nanosheet anchored 3D reduced graphene oxide aerogel scaffolds as self-supporting electrodes for high-performance Na- and Li-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
23 Aug 2017
Accepted
07 Nov 2017
First published
15 Nov 2017
This article is Open Access
Creative Commons BY license

RSC Adv., 2017,7, 52702-52711

Dual-phase spinel Li4Ti5O12/anatase TiO2 nanosheet anchored 3D reduced graphene oxide aerogel scaffolds as self-supporting electrodes for high-performance Na- and Li-ion batteries

Y. Tian, G. Xu, Z. Wu, J. Zhong and L. Yang, RSC Adv., 2017, 7, 52702 DOI: 10.1039/C7RA09343H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements