Issue 81, 2017

Changing the shape of hair with keratin peptides

Abstract

Chemical straightening of curly human hair fibres involves the use of strong reducing agents at alkaline pH. Human hair is made of keratin, and the fixation of fibre shape involves the reduction and reformation of new disulphide bonds between keratin molecules. Here, we propose an alternative and green methodology using keratin peptide sequences (10–13 residues) derived from the human genome. In a previous study, we analysed 1235 cysteine-containing peptides encoded by all human genes of hair keratin and keratin-associated proteins. These peptide fragments have been designed by nature to interact with keratin. Here we tested eight peptides, which were select based on their affinity for human hair keratin solution as shown by Matrix-Assisted Laser-Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF/TOF) and by molecular dynamics simulation. The peptides were characterized in detail regarding their ability to act as hair straightening modulators and to improve the tensile strength and elasticity of hair. Of the eight tested peptides, PepE, PepG and KP showed the highest ability to interact with a keratin peptide model, and to improve hair mechanical properties and straightening efficiency. The proposed solutions presented here will replace harsh reducing agents at alkaline pH by peptide formulations acting at neutral pH to change hair shape through the re-conformation of disulphide bonds. Here, we provide experimental evidence which explains at a molecular level how keratin decapeptides can interact with large keratin molecules in human hair, opening an innovative green approach to changing the shape of hair fibre.

Graphical abstract: Changing the shape of hair with keratin peptides

Supplementary files

Article information

Article type
Paper
Submitted
20 Sep 2017
Accepted
26 Oct 2017
First published
06 Nov 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 51581-51592

Changing the shape of hair with keratin peptides

C. F. Cruz, M. Martins, J. Egipto, H. Osório, A. Ribeiro and A. Cavaco-Paulo, RSC Adv., 2017, 7, 51581 DOI: 10.1039/C7RA10461H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements