Issue 89, 2017, Issue in Progress

Temporal dynamics of bacterial communities and predicted nitrogen metabolism genes in a full-scale wastewater treatment plant

Abstract

The dynamics of bacterial communities in a full-scale wastewater treatment plant (WWTP) were investigated using Illumina MiSeq sequencing and PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states) over a one-year period. Results showed that the temporal dynamics of structure, diversity and abundance of bacterial community were not obvious. The persistent species had low diversity but high relative abundance. Dechloromonas, Thauera, Nitrosomonas and Nitrospira were the four dominant persistent genera. The intermittent and transient genera showed different dynamics with persistent genera. Variation partitioning analysis suggested that water quality indexes (13.40%) had the greatest contribution to bacterial community variation, followed by temperature (9.20%). Quantitative polymerase chain reaction analysis revealed the stable abundances of nitrifying and denitrifying bacteria, and the occurrence of complete ammonia oxidizers (Comammox) in the full-scale WWTP. Functional prediction showed that the bacterial functional compositions were also relatively stable, and metabolism was the most dominant functional category. Many genes involved in the nitrogen metabolism pathway were predicted to be present with high gene counts, e.g., nirB, nirD, nasA, norB, nirK, nosZ and nifH. Most of these genes were predicted to be mainly contributed by Rhizobiales, Burkholderiales, Rhodocyclales and Actinomycetales. Overall, the composition and function of bacterial community in a long-term monitoring were relatively stable, which is important for maintaining the high wastewater treatment capability in full-scale WWTPs.

Graphical abstract: Temporal dynamics of bacterial communities and predicted nitrogen metabolism genes in a full-scale wastewater treatment plant

Supplementary files

Article information

Article type
Paper
Submitted
27 Sep 2017
Accepted
03 Dec 2017
First published
15 Dec 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 56317-56327

Temporal dynamics of bacterial communities and predicted nitrogen metabolism genes in a full-scale wastewater treatment plant

X. Fan, J. Gao, K. Pan, D. Li and H. Dai, RSC Adv., 2017, 7, 56317 DOI: 10.1039/C7RA10704H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements