Issue 84, 2017, Issue in Progress

Surface modification of anhydrite whiskers and their potential application for durable superhydrophobic coatings

Abstract

Durability issues have been an obstacle for superhydrophobic coating applications for a long time. Here, we report the modification of anhydrite whiskers that can be used for the fabrication of superhydrophobic coatings with high durability. Anhydrite whiskers with core/shell structures are prepared via hydrolysis and condensation processes of tetraethyl orthosilicate (TEOS) followed by silane modification. Modified anhydrite whiskers were examined by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicate that anhydrite whiskers exhibit an obviously hydrophobic quality after modification, reaching a contact angle of up to 123°. The thickness of the surface modification layer is 10–20 nm. The modified anhydrite whiskers were used to fabricate a superhydrophobic coating. Modified anhydrite whiskers create a rough structure on the glass substrate surface. This roughness develops a Cassie–Baxter regime, enhancing the superhydrophobicity of the coating. The water contact angle of the coating is above 150°. This method is expected to apply to similar materials for the fabrication of durable superhydrophobic coatings.

Graphical abstract: Surface modification of anhydrite whiskers and their potential application for durable superhydrophobic coatings

Article information

Article type
Paper
Submitted
03 Oct 2017
Accepted
31 Oct 2017
First published
20 Nov 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 53301-53305

Surface modification of anhydrite whiskers and their potential application for durable superhydrophobic coatings

T. Hong, Y. Wang, X. Nai, Y. Dong, X. Liu and W. Li, RSC Adv., 2017, 7, 53301 DOI: 10.1039/C7RA10908C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements