Issue 88, 2017, Issue in Progress

Achieving a high-efficiency dual-core chromophore for emission of blue light by testing different side groups and substitution positions

Abstract

Hetero dual-core derivatives that combine anthracene and pyrene were systematically studied for the purpose of producing highly efficient blue light-emitting materials applicable to organic light-emitting diode (OLED) lighting. Five compounds were designed in order to (1) determine which one of the two core chromophores in a hetero dual-core moiety, if any, acts as the main contributor to the optical and electronic properties of the final compounds, (2) control the electron-donating ability of the side group, and (3) change the substitution position. 1-[1,1′;3′,1′′]terphenyl-5′-yl-6-(10-[1,1′;3′,1′′]terphenyl-5′-yl-anthracen-9-yl)-pyrene (TP-AP-TP) was used as the reference material, and four other materials, including diphenyl-[10-(6-[1,1′;3′,1′′]terphenyl-5′-yl-pyren-1-yl)-anthracen-9-yl]-amine (DPA-AP-TP), diphenyl-[6-(10-[1,1′;3′,1′′]terphenyl-5′-yl-anthracen-9-yl)-pyren-1-yl]-amine (TP-AP-DPA), diphenyl-{4-[10-(6-[1,1′;3′,1′′]-terphenyl-5′-yl-pyren-1-yl)-anthracen-9-yl]-phenyl}-amine (TPA-AP-TP) and diphenyl-{4-[6-(10-[1,1′;3′,1′′]terphenyl-5′-yl-anthracen-9-yl)-pyren-1-yl]-phenyl}-amine (TP-AP-TPA), were synthesized as model compounds. The synthesized materials showed absorption wavelength peaks at 403–410 nm in the film state and exhibited PL emissions of 458–505 nm. Also, anthracene was shown to be the main core contributing to the optical and electronic properties. Among the synthesized molecules, the TPA-AP-TP molecule, in which triphenylamine, with its optimum electron-donating ability, was substituted into anthracene, showed excellent electroluminescence (EL) performance for OLED lighting with a current efficiency of 8.05 cd A−1, external quantum efficiency of 6.75%, and narrow EL FWHM of 53 nm.

Graphical abstract: Achieving a high-efficiency dual-core chromophore for emission of blue light by testing different side groups and substitution positions

Supplementary files

Article information

Article type
Paper
Submitted
25 Oct 2017
Accepted
30 Nov 2017
First published
07 Dec 2017
This article is Open Access
Creative Commons BY license

RSC Adv., 2017,7, 55582-55593

Achieving a high-efficiency dual-core chromophore for emission of blue light by testing different side groups and substitution positions

H. Shin, B. Kim, H. Jung, J. Lee, H. Lee, S. Kang, J. Moon, J. Kim and J. Park, RSC Adv., 2017, 7, 55582 DOI: 10.1039/C7RA11773F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements