Issue 2, 2017

Molecular titanium nitrides: nucleophiles unleashed

Abstract

In this contribution we present reactivity studies of a rare example of a titanium salt, in the form of [μ2-K(OEt2)]2[(PN)2Ti[triple bond, length as m-dash]N]2 (1) (PN = N-(2-(diisopropylphosphino)-4-methylphenyl)-2,4,6-trimethylanilide) to produce a series of imide moieties including rare examples such as methylimido, borylimido, phosphonylimido, and a parent imido. For the latter, using various weak acids allowed us to narrow the pKa range of the NH group in (PN)2Ti[triple bond, length as m-dash]NH to be between 26–36. Complex 1 could be produced by a reductively promoted elimination of N2 from the azide precursor (PN)2TiN3, whereas reductive splitting of N2 could not be achieved using the complex (PN)2Ti[double bond, length as m-dash]N[double bond, length as m-dash]N[double bond, length as m-dash]Ti(PN)2 (2) and a strong reductant. Complete N-atom transfer reactions could also be observed when 1 was treated with ClC(O)tBu and OCCPh2 to form NCtBu and KNCCPh2, respectively, along with the terminal oxo complex (PN)2Ti[triple bond, length as m-dash]O, which was also characterized. A combination of solid state 15N NMR (MAS) and theoretical studies allowed us to understand the shielding effect of the counter cation in dimer 1, the monomer [K(18-crown-6)][(PN)2Ti[triple bond, length as m-dash]N], and the discrete salt [K(2,2,2-Kryptofix)][(PN)2Ti[triple bond, length as m-dash]N] as well as the origin of the highly downfield 15N NMR resonance when shifting from dimer to monomer to a terminal nitride (discrete salt). The upfield shift of 15Nnitride resonance in the 15N NMR spectrum was found to be linked to the K+ induced electronic structural change of the titanium-nitride functionality by using a combination of MO analysis and quantum chemical analysis of the corresponding shielding tensors.

Graphical abstract: Molecular titanium nitrides: nucleophiles unleashed

Supplementary files

Article information

Article type
Edge Article
Submitted
01 Aug 2016
Accepted
19 Sep 2016
First published
22 Sep 2016
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2017,8, 1209-1224

Molecular titanium nitrides: nucleophiles unleashed

L. N. Grant, B. Pinter, T. Kurogi, M. E. Carroll, G. Wu, B. C. Manor, P. J. Carroll and D. J. Mindiola, Chem. Sci., 2017, 8, 1209 DOI: 10.1039/C6SC03422E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements