Issue 11, 2017

Nanomolar small-molecule detection using a genetically encoded 129Xe NMR contrast agent

Abstract

Genetically encoded magnetic resonance imaging (MRI) contrast agents enable non-invasive detection of specific biomarkers in vivo. Here, we employed the hyper-CEST 129Xe NMR technique to quantify maltose (32 nM to 1 mM) through its modulation of conformational change and xenon exchange in maltose binding protein (MBP). Remarkably, no hyper-CEST signal was observed for MBP in the absence of maltose, making MBP an ultrasensitive “smart” contrast agent. The resonance frequency of 129Xe bound to MBP was greatly downfield-shifted (Δδ = 95 ppm) from the 129Xe(aq) peak, which facilitated detection in E. coli as well as multiplexing with TEM-1 β-lactamase. Finally, a Val to Ala mutation at the MBP–Xe binding site yielded 34% more contrast than WT, with 129Xe resonance frequency shifted 59 ppm upfield from WT. We conclude that engineered MBPs constitute a new class of genetically encoded, analyte-sensitive molecular imaging agents detectable by 129Xe NMR/MRI.

Graphical abstract: Nanomolar small-molecule detection using a genetically encoded 129Xe NMR contrast agent

Supplementary files

Article information

Article type
Edge Article
Submitted
17 Aug 2017
Accepted
20 Sep 2017
First published
20 Sep 2017
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2017,8, 7631-7636

Nanomolar small-molecule detection using a genetically encoded 129Xe NMR contrast agent

B. W. Roose, S. D. Zemerov and I. J. Dmochowski, Chem. Sci., 2017, 8, 7631 DOI: 10.1039/C7SC03601A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements