Growth of three-dimensional flower-like SnS2 on g-C3N4 sheets as an efficient visible-light photocatalyst, photoelectrode, and electrochemical supercapacitance material†
Abstract
Three-dimensional flower-like SnS2 was grown on a g-C3N4 sheet by a facile solvothermal process. The internal photophysical characteristics, and surface behavior of the well-designed SnS2-g-C3N4 heterostructure were characterized systematically using a range of standard spectroscopic techniques. The visible light responsive characteristics towards the degradation of a model organic pollutant were assessed by the degradation of RhB dye under visible light illumination and the results showed that the SnS2-g-C3N4 heterostructure has a larger photodegradation ability compared to the pure g-C3N4 and SnS2 as well as a similar heterostructure prepared by a physical stirring method. The electrochemical supercapacitance performance of the designed SnS2-g-C3N4 heterostructure was assessed by galvanic charge discharge (GCD) measurements in a half-cell assembly system. The SnS2-g-C3N4 heterostructure exhibited superior electrochemical performance with a higher specific capacitance and cycling stability than those of the bare materials and a similar heterostructure (SnS2-g-C3N4-Pm) prepared by a different method. The superior performance was attributed mainly to the narrow band gap energy of both constituents, high surface area, unique 3D structure, interfacial transportation of charge carriers, few-layered nature, capacitive behavior, and nitrogen-rich skeleton.