Issue 5, 2017

Ca2+ and Ga3+ doped LaMnO3 perovskite as a highly efficient and stable catalyst for two-step thermochemical water splitting

Abstract

High performance and stable catalysts for two-step thermochemical water splitting are key to synthesising direct fuels in the form of H2 or liquid hydrocarbon fuels by the Fischer–Tropsch process. Herein, we designed and synthesised LaMnO3 perovskite structured oxides doped on both the A and B sites for two-step thermochemical water splitting. First, Ca2+, Sr2+ and Ba2+ divalent cations were successfully doped on the A site of LaMnO3 and the thermochemical water splitting performances were analysed. After that, Al3+ and Ga3+ ions were doped on the B site of the perovskites produced in the first step. Through this strategy, a novel perovskite composition (La0.6Ca0.4Mn0.8Ga0.2O3) was found with remarkable water splitting performance, producing 401 μmol g−1 of H2 at low thermochemical cycle temperatures between 1300 and 900 °C. The as-prepared perovskite exhibits twelve times higher H2 production than the benchmark CeO2 catalyst under the same experimental conditions. This novel perovskite is also capable of maintaining steady-state redox activity during the water splitting cycles.

Graphical abstract: Ca2+ and Ga3+ doped LaMnO3 perovskite as a highly efficient and stable catalyst for two-step thermochemical water splitting

Supplementary files

Article information

Article type
Communication
Submitted
12 Dec 2016
Accepted
26 Mar 2017
First published
27 Mar 2017

Sustainable Energy Fuels, 2017,1, 1013-1017

Ca2+ and Ga3+ doped LaMnO3 perovskite as a highly efficient and stable catalyst for two-step thermochemical water splitting

L. Wang, M. Al-Mamun, Y. L. Zhong, L. Jiang, P. Liu, Y. Wang, H. G. Yang and H. Zhao, Sustainable Energy Fuels, 2017, 1, 1013 DOI: 10.1039/C6SE00097E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements