Issue 5, 2017

Highly correlated ab initio thermodynamics of oxymethylene dimethyl ethers (OME): formation and extension to the liquid phase

Abstract

Oxymethylene dimethyl ethers, of the structure CH3(OCH2)nOCH3, denoted as OMEn are receiving increasing interest (where n = 2–5) in a range of important applications including as sustainable fuels and solvents (e.g. as derived from green methanol). However, limited thermodynamic information from computational studies exists in the literature regarding their formation in the gas and liquid phases. In this context, this report describes the principal thermodynamic functions of gaseous and liquid phase OME formation derived from B3LYP-D3(BJ)/def2-TZVPP optimised structures and a series of CCSD(T) and MP2 calculations. The generated total energies are almost of CCSD(T)/A′VQZ quality, the “gold standard” of computational chemistry. Thermal corrections to enthalpy and entropy were included on the basis of analytical BP86-D3(BJ)/def-TZVP frequencies and empirical corrections for low anharmonic C–O–C–O torsional vibrations/hindered rotations and due to the neglect of other conformers/enantiomers. This yielded corrected values for the standard entropy S° of gaseous OMEn (n = 2–7). With the well-established experimental formation enthalpies of dimethyl ether (i.e. OME0) and OME1, the formation enthalpies of OME2–7 were obtained from those and the isodesmic reaction enthalpy of nOME1 → OMEn + (n − 1)OME0. Overall, an error bar on those gas phase values of <1 kJ mol−1 is assigned. From the known and extra- or interpolated phase change thermodynamics, the standard formation enthalpy H°, and the standard entropy S°, as well as the heat capacity cp were established for the liquid mixture of OME2–7. The internal consistency of these data was assessed based on the plots of H°/S° vs. n, presenting linear regressions and correlation coefficients very close to unity. Data quality was also evaluated against published combustion energies, suggesting our values are currently the most reliable, internally consistent dataset that should be used in future investigations for the design of sustainable ether-based fuels and chemicals.

Graphical abstract: Highly correlated ab initio thermodynamics of oxymethylene dimethyl ethers (OME): formation and extension to the liquid phase

Supplementary files

Article information

Article type
Paper
Submitted
27 Jan 2017
Accepted
14 Apr 2017
First published
20 Apr 2017

Sustainable Energy Fuels, 2017,1, 1177-1183

Highly correlated ab initio thermodynamics of oxymethylene dimethyl ethers (OME): formation and extension to the liquid phase

D. Himmel, R. J. White, E. Jacob and I. Krossing, Sustainable Energy Fuels, 2017, 1, 1177 DOI: 10.1039/C7SE00053G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements