Issue 3, 2017

Silicon heterojunction solar cells with effectively transparent front contacts

Abstract

We demonstrate silicon heterojunction solar cells with microscale effectively transparent front contacts (ETCs) that redirect incoming light to the active area of the solar cell. Replacing standard contact electrodes by ETCs leads to an enhancement in short circuit current density of 2.2 mA cm−2 through mitigation of 6% shading losses and improved antireflection layers. ETCs enable low loss lateral carrier transport, with cells achieving an 80.7% fill factor. Furthermore, dense spacing of the contact lines allows for a reduced indium tin oxide thickness and use of non-conductive, optically optimized antireflection coatings such as silicon nitride. We investigated the performance of ETCs under varying light incidence angles, and for angles parallel to the ETC lines find that there is no difference in photocurrent density with respect to bare indium tin oxide layers. For angles perpendicular to the ETC lines, we find that the external quantum efficiency (EQE) always outperforms cells with flat contact grids.

Graphical abstract: Silicon heterojunction solar cells with effectively transparent front contacts

Article information

Article type
Paper
Submitted
16 Feb 2017
Accepted
27 Feb 2017
First published
27 Feb 2017

Sustainable Energy Fuels, 2017,1, 593-598

Silicon heterojunction solar cells with effectively transparent front contacts

R. Saive, M. Boccard, T. Saenz, S. Yalamanchili, C. R. Bukowsky, P. Jahelka, Z. J. Yu, J. Shi, Z. Holman and H. A. Atwater, Sustainable Energy Fuels, 2017, 1, 593 DOI: 10.1039/C7SE00096K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements