Issue 15, 2017

Nano-thin walled micro-compartments from transmembrane protein–polymer conjugates

Abstract

The high interfacial activity of protein–polymer conjugates has inspired their use as stabilizers for Pickering emulsions, resulting in many interesting applications such as synthesis of templated micro-compartments and protocells or vehicles for drug and gene delivery. In this study we report, for the first time, the stabilization of Pickering emulsions with conjugates of a genetically modified transmembrane protein, ferric hydroxamate uptake protein component A (FhuA). The lysine residues of FhuA with open pore (FhuA ΔCVFtev) were modified to attach an initiator and consequently controlled radical polymerization (CRP) carried out via the grafting-from technique. The resulting conjugates of FhuA ΔCVFtev with poly(N-isopropylacrylamide) (PNIPAAm) and poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA), the so-called building blocks based on transmembrane proteins (BBTP), have been shown to engender larger structures. The properties such as pH-responsivity, temperature-responsivity and interfacial activity of the BBTP were analyzed using UV-Vis spectrophotometry and pendant drop tensiometry. The BBTP were then utilized for the synthesis of highly stable Pickering emulsions, which could remain non-coalesced for well over a month. A new UV-crosslinkable monomer was synthesized and copolymerized with NIPAAm from the protein. The emulsion droplets, upon crosslinking of polymer chains, yielded micro-compartments. Fluorescence microscopy proved that these compartments are of micrometer scale, while cryo-scanning electron microscopy and scanning force microscopy analysis yielded a thickness in the range of 11.1 ± 0.6 to 38.0 ± 18.2 nm for the stabilizing layer of the conjugates. Such micro-compartments would prove to be beneficial in drug delivery applications, owing to the possibility of using the channel of the transmembrane protein as a gate and the smart polymer chains as trigger switches to tune the behavior of the capsules.

Graphical abstract: Nano-thin walled micro-compartments from transmembrane protein–polymer conjugates

Supplementary files

Article information

Article type
Paper
Submitted
08 Nov 2016
Accepted
17 Mar 2017
First published
20 Mar 2017

Soft Matter, 2017,13, 2866-2875

Nano-thin walled micro-compartments from transmembrane protein–polymer conjugates

H. Charan, U. Glebe, D. Anand, J. Kinzel, L. Zhu, M. Bocola, T. M. Garakani, U. Schwaneberg and A. Böker, Soft Matter, 2017, 13, 2866 DOI: 10.1039/C6SM02520J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements