Issue 9, 2017

Structure formation in nanocomposite hydrogels

Abstract

We use molecular dynamics simulations to study structure formation in physically associating nanocomposite hydrogels. Nanofillers were modeled as rigid bodies of disk-like shapes and physical crosslinks were simulated by introducing a short-range attraction between the nanofillers and polymer chain ends. The structure, dynamics and mechanics of these polymer gels were studied as a function of nanofiller volume fraction. We observe the formation of a percolated network in the hydrogels, with an ordered local structure but disordered globally, as we increase the filler fraction. This locally ordered structure was a result of the anisotropy of the disk-like fillers. The dynamics of polymers showed significant caging effects in the gel state. Stress autocorrelation and elongation results were analyzed as a function of nano-filler concentrations. Comparisons with nanofillers of different shapes showed that disk-like nanofillers are more effective in strengthening the hydrogels than spherical nanofillers.

Graphical abstract: Structure formation in nanocomposite hydrogels

Article information

Article type
Paper
Submitted
10 Nov 2016
Accepted
31 Jan 2017
First published
31 Jan 2017

Soft Matter, 2017,13, 1853-1861

Structure formation in nanocomposite hydrogels

D. Xu and D. Gersappe, Soft Matter, 2017, 13, 1853 DOI: 10.1039/C6SM02543A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements