Issue 21, 2017

A dsDNA model optimized for electrokinetic applications

Abstract

We present a coarse-grained (CG) model of a charged double-stranded DNA immersed in an electrolyte solution that can be used for a variety of electrokinetic applications. The model is based on an earlier rigid and immobile model of Weik et al. and includes now semi-flexibility and mobility, so that DNA dynamics can be sufficiently captured to simulate a full nanopore translocation process. To this end we couple the DNA hydrodynamically via a raspberry approach to a lattice-Boltzmann fluid and parametrize the counterions with a distant dependent friction. The electrokinetic properties of the CG DNA model inside an infinite cylinder is fitted against experimental data from Smeets et al. and all-atom simulation data from Kesselheim et al. The stiffness of our CG DNA is modeled via a harmonic angle potential fitted against experimental data of Brunet et al. Finally, the quality of our tuned parameters is tested by measuring the electrophoretic mobility of our DNA model for various numbers of base pairs and salt concentrations. Our results compare excellently with the experimental data sets of Stellwagen et al. and Hoagland et al.

Graphical abstract: A dsDNA model optimized for electrokinetic applications

Article information

Article type
Paper
Submitted
08 Feb 2017
Accepted
08 May 2017
First published
12 May 2017

Soft Matter, 2017,13, 3918-3926

A dsDNA model optimized for electrokinetic applications

T. Rau, F. Weik and C. Holm, Soft Matter, 2017, 13, 3918 DOI: 10.1039/C7SM00270J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements