Textures and shapes in nematic elastomers under the action of dopant concentration gradients
Abstract
We explore a novel strategy of patterning nematic elastomers that does not require inscribing the texture directly. It is based on varying the dopant concentration that, beside shifting the phase transition point, affects the nematic director field via coupling between the gradients of concentration and nematic order parameter. Rotation of the director around a point dopant source causes topological modification manifesting itself in a change of the number of defects. A variety of shapes, dependent on the dopant distribution, are obtained by anisotropic deformation following the nematic–isotropic transition.