Issue 40, 2017

pH-Switchable and self-healable hydrogels based on ketone type acylhydrazone dynamic covalent bonds

Abstract

Stimuli-responsive hydrogels using dynamic covalent bonds (DCBs) as cross-links may exhibit simultaneously the stimuli-responsibility of the physical gels and stability of the chemical gels. We prepared well-defined, ketone-based polymers based on commercially available diacetone acrylamide (DAAM) by a reversible addition–fragmentation chain transfer (RAFT) polymerization technique. The polymers could react with hexanedihydrazide yielding hydrogels. The mechanics, flexible properties and gelator concentration of the hydrogels can be tuned by varying the ratio of DAAM. Gelation time and hydrogel stability were gravely affected by the pH of the surrounding medium. The hydrogels possess self-healing ability without any external stimuli and undergo switchable sol–gel transition by the alternation of pH. In addition, the hydrogels showed pH-responsive controlled release behavior for rhodamine B. These kinds of ketone-type acylhydrazone DCB hydrogels, avoiding the aldehyde component, may ameliorate their biocompatibility and find potential applications in biomedicines, tissue engineering, etc.

Graphical abstract: pH-Switchable and self-healable hydrogels based on ketone type acylhydrazone dynamic covalent bonds

Supplementary files

Article information

Article type
Paper
Submitted
07 May 2017
Accepted
09 Sep 2017
First published
11 Sep 2017

Soft Matter, 2017,13, 7371-7380

pH-Switchable and self-healable hydrogels based on ketone type acylhydrazone dynamic covalent bonds

Z. Guo, W. Ma, H. Gu, Y. Feng, Z. He, Q. Chen, X. Mao, J. Zhang and L. Zheng, Soft Matter, 2017, 13, 7371 DOI: 10.1039/C7SM00916J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements